Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 4 of 4 for Knuth (0.02 sec)

  1. guava/src/com/google/common/math/Stats.java

        while (values.hasNext()) {
          double value = values.next().doubleValue();
          count++;
          if (isFinite(value) && isFinite(mean)) {
            // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15)
            mean += (value - mean) / count;
          } else {
            mean = calculateNewMeanNonFinite(mean, value);
          }
        }
        return mean;
      }
    
      /**
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 23 16:45:30 UTC 2024
    - 24.9K bytes
    - Viewed (0)
  2. guava/src/com/google/common/math/PairedStatsAccumulator.java

      /** Adds the given pair of values to the dataset. */
      public void add(double x, double y) {
        // We extend the recursive expression for the one-variable case at Art of Computer Programming
        // vol. 2, Knuth, 4.2.2, (16) to the two-variable case. We have two value series x_i and y_i.
        // We define the arithmetic means X_n = 1/n \sum_{i=1}^n x_i, and Y_n = 1/n \sum_{i=1}^n y_i.
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Fri May 12 17:02:53 UTC 2023
    - 10.3K bytes
    - Viewed (0)
  3. android/guava/src/com/google/common/math/PairedStatsAccumulator.java

      /** Adds the given pair of values to the dataset. */
      public void add(double x, double y) {
        // We extend the recursive expression for the one-variable case at Art of Computer Programming
        // vol. 2, Knuth, 4.2.2, (16) to the two-variable case. We have two value series x_i and y_i.
        // We define the arithmetic means X_n = 1/n \sum_{i=1}^n x_i, and Y_n = 1/n \sum_{i=1}^n y_i.
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Fri May 12 17:02:53 UTC 2023
    - 10.3K bytes
    - Viewed (0)
  4. android/guava/src/com/google/common/math/StatsAccumulator.java

          max = value;
          if (!isFinite(value)) {
            sumOfSquaresOfDeltas = NaN;
          }
        } else {
          count++;
          if (isFinite(value) && isFinite(mean)) {
            // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) and (16)
            double delta = value - mean;
            mean += delta / count;
            sumOfSquaresOfDeltas += delta * (value - mean);
          } else {
            mean = calculateNewMeanNonFinite(mean, value);
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 23 16:45:30 UTC 2024
    - 15.8K bytes
    - Viewed (0)
Back to top