- Sort Score
- Result 10 results
- Languages All
Results 1 - 9 of 9 for Gb (0.01 sec)
-
docs/pt/docs/deployment/concepts.md
Por exemplo, se seu código carrega um modelo de Machine Learning com **1 GB de tamanho**, quando você executa um processo com sua API, ele consumirá pelo menos 1 GB de RAM. E se você iniciar **4 processos** (4 trabalhadores), cada um consumirá 1 GB de RAM. Então, no total, sua API consumirá **4 GB de RAM**. E se o seu servidor remoto ou máquina virtual tiver apenas 3 GB de RAM, tentar carregar mais de 4 GB de RAM causará problemas. 🚨
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun May 11 13:37:26 UTC 2025 - 19.7K bytes - Viewed (0) -
docs/es/docs/deployment/concepts.md
Por ejemplo, si tu código carga un modelo de Machine Learning con **1 GB de tamaño**, cuando ejecutas un proceso con tu API, consumirá al menos 1 GB de RAM. Y si inicias **4 procesos** (4 workers), cada uno consumirá 1 GB de RAM. Así que, en total, tu API consumirá **4 GB de RAM**. Y si tu servidor remoto o máquina virtual solo tiene 3 GB de RAM, intentar cargar más de 4 GB de RAM causará problemas. 🚨 ### Múltiples Procesos - Un Ejemplo
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun May 11 13:37:26 UTC 2025 - 19.3K bytes - Viewed (0) -
docs/de/docs/deployment/concepts.md
Wenn Ihr Code beispielsweise ein Machine-Learning-Modell mit **1 GB Größe** lädt und Sie einen Prozess mit Ihrer API ausführen, verbraucht dieser mindestens 1 GB RAM. Und wenn Sie **4 Prozesse** (4 Worker) starten, verbraucht jeder 1 GB RAM. Insgesamt verbraucht Ihre API also **4 GB RAM**. Und wenn Ihr entfernter Server oder Ihre virtuelle Maschine nur über 3 GB RAM verfügt, führt der Versuch, mehr als 4 GB RAM zu laden, zu Problemen. 🚨
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun May 11 13:37:26 UTC 2025 - 20.6K bytes - Viewed (0) -
docs/en/docs/deployment/concepts.md
For example, if your code loads a Machine Learning model with **1 GB in size**, when you run one process with your API, it will consume at least 1 GB of RAM. And if you start **4 processes** (4 workers), each will consume 1 GB of RAM. So in total, your API will consume **4 GB of RAM**. And if your remote server or virtual machine only has 3 GB of RAM, trying to load more than 4 GB of RAM will cause problems. 🚨
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 18.6K bytes - Viewed (0) -
src/test/java/jcifs/internal/AllocInfoTest.java
void shouldHandleTypicalFileSystemSizes() { // Test common file system sizes long[] typicalSizes = { 1024L * 1024L * 1024L, // 1 GB 1024L * 1024L * 1024L * 10L, // 10 GB 1024L * 1024L * 1024L * 100L, // 100 GB 1024L * 1024L * 1024L * 1024L, // 1 TB 1024L * 1024L * 1024L * 1024L * 10L // 10 TB };
Registered: Sun Sep 07 00:10:21 UTC 2025 - Last Modified: Thu Aug 14 05:31:44 UTC 2025 - 18.8K bytes - Viewed (0) -
src/test/java/org/codelibs/fess/mylasta/direction/sponsor/FessUserLocaleProcessProviderTest.java
return "lang"; } }; ComponentUtil.setFessConfig(mockConfig); // Setup mock request manager RequestManager mockRequestManager = createMockRequestManager("en-GB"); // Execute OptionalThing<Locale> result = provider.findBusinessLocale(null, mockRequestManager); // Verify assertTrue(result.isPresent());
Registered: Thu Sep 04 12:52:25 UTC 2025 - Last Modified: Tue Aug 19 14:09:36 UTC 2025 - 11K bytes - Viewed (0) -
src/test/java/org/codelibs/fess/helper/LabelTypeHelperTest.java
assertFalse(labelTypeHelper.matchLocale(Locale.US, Locale.UK)); // Test with same language but different country Locale enUS = new Locale("en", "US"); Locale enGB = new Locale("en", "GB"); assertFalse(labelTypeHelper.matchLocale(enUS, enGB)); // Test with same language, target has no country Locale en = new Locale("en"); assertTrue(labelTypeHelper.matchLocale(enUS, en));
Registered: Thu Sep 04 12:52:25 UTC 2025 - Last Modified: Sat Jul 19 23:49:30 UTC 2025 - 12.4K bytes - Viewed (0) -
mockwebserver-deprecated/src/test/java/okhttp3/mockwebserver/MockWebServerTest.kt
val connection = server.url("/").toUrl().openConnection() as HttpURLConnection connection.setRequestMethod("POST") connection.setDoOutput(true) connection.setFixedLengthStreamingMode(1024 * 1024 * 1024) // 1 GB connection.connect() val out = connection.outputStream val data = ByteArray(1024 * 1024) var i = 0 while (i < 1024) { try { out.write(data) out.flush()
Registered: Fri Sep 05 11:42:10 UTC 2025 - Last Modified: Thu Jul 03 13:16:34 UTC 2025 - 22.3K bytes - Viewed (0) -
mockwebserver/src/test/java/mockwebserver3/MockWebServerTest.kt
val connection = server.url("/").toUrl().openConnection() as HttpURLConnection connection.requestMethod = "POST" connection.doOutput = true connection.setFixedLengthStreamingMode(1024 * 1024 * 1024) // 1 GB connection.connect() val out = connection.outputStream val data = ByteArray(1024 * 1024) var i = 0 while (i < 1024) { try { out!!.write(data) out.flush()
Registered: Fri Sep 05 11:42:10 UTC 2025 - Last Modified: Sun Aug 03 22:38:00 UTC 2025 - 28K bytes - Viewed (0)