- Sort Score
- Result 10 results
- Languages All
Results 1 - 9 of 9 for GB (0.03 sec)
-
compat/maven-embedder/src/test/java/org/apache/maven/cli/transfer/FileSizeFormatTest.java
assertEquals("1.0 GB", format.format(_1000_megabytes)); long _5500_megabytes = 5500L * 1000L * 1000L; assertEquals("5.5 GB", format.format(_5500_megabytes)); long _10_gigabytes = 10L * 1000L * 1000L * 1000L; assertEquals("10 GB", format.format(_10_gigabytes)); long _15_gigabytes = 15L * 1000L * 1000L * 1000L; assertEquals("15 GB", format.format(_15_gigabytes));
Registered: Sun Nov 03 03:35:11 UTC 2024 - Last Modified: Fri Oct 25 12:31:46 UTC 2024 - 13K bytes - Viewed (0) -
docs/zh/docs/deployment/concepts.md
多个进程通常**不共享任何内存**。 这意味着每个正在运行的进程都有自己的东西、变量和内存。 如果您的代码消耗了大量内存,**每个进程**将消耗等量的内存。 ### 服务器内存 例如,如果您的代码加载 **1 GB 大小**的机器学习模型,则当您使用 API 运行一个进程时,它将至少消耗 1 GB RAM。 如果您启动 **4 个进程**(4 个工作进程),每个进程将消耗 1 GB RAM。 因此,您的 API 总共将消耗 **4 GB RAM**。 如果您的远程服务器或虚拟机只有 3 GB RAM,尝试加载超过 4 GB RAM 将导致问题。 🚨 ### 多进程 - 一个例子 在此示例中,有一个 **Manager Process** 启动并控制两个 **Worker Processes**。
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 16.2K bytes - Viewed (0) -
docs/pt/docs/deployment/concepts.md
Por exemplo, se seu código carrega um modelo de Machine Learning com **1 GB de tamanho**, quando você executa um processo com sua API, ele consumirá pelo menos 1 GB de RAM. E se você iniciar **4 processos** (4 trabalhadores), cada um consumirá 1 GB de RAM. Então, no total, sua API consumirá **4 GB de RAM**. E se o seu servidor remoto ou máquina virtual tiver apenas 3 GB de RAM, tentar carregar mais de 4 GB de RAM causará problemas. 🚨
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Fri Oct 04 11:04:50 UTC 2024 - 19.7K bytes - Viewed (0) -
docs/de/docs/deployment/concepts.md
Wenn Ihr Code beispielsweise ein Machine-Learning-Modell mit **1 GB Größe** lädt und Sie einen Prozess mit Ihrer API ausführen, verbraucht dieser mindestens 1 GB RAM. Und wenn Sie **4 Prozesse** (4 Worker) starten, verbraucht jeder 1 GB RAM. Insgesamt verbraucht Ihre API also **4 GB RAM**. Und wenn Ihr entfernter Server oder Ihre virtuelle Maschine nur über 3 GB RAM verfügt, führt der Versuch, mehr als 4 GB RAM zu laden, zu Problemen. 🚨
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 20.6K bytes - Viewed (0) -
docs/en/docs/img/deployment/concepts/process-ram.drawio
</mxCell> <mxCell id="23" value="<font face="Roboto" data-font-src="https://fonts.googleapis.com/css?family=Roboto" style="font-size: 24px">1 GB</font>" style="rounded=0;whiteSpace=wrap;html=1;strokeWidth=3;fillColor=#fff2cc;strokeColor=#d6b656;" parent="1" vertex="1"> <mxGeometry x="1130" y="490" width="150" height="150" as="geometry"/>
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Thu May 12 00:06:16 UTC 2022 - 10K bytes - Viewed (0) -
docs/en/docs/deployment/concepts.md
For example, if your code loads a Machine Learning model with **1 GB in size**, when you run one process with your API, it will consume at least 1 GB of RAM. And if you start **4 processes** (4 workers), each will consume 1 GB of RAM. So in total, your API will consume **4 GB of RAM**. And if your remote server or virtual machine only has 3 GB of RAM, trying to load more than 4 GB of RAM will cause problems. 🚨 ### Multiple Processes - An Example
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Wed Sep 18 16:09:57 UTC 2024 - 17.8K bytes - Viewed (0) -
mockwebserver-deprecated/src/test/java/okhttp3/mockwebserver/MockWebServerTest.kt
val connection = server.url("/").toUrl().openConnection() as HttpURLConnection connection.setRequestMethod("POST") connection.setDoOutput(true) connection.setFixedLengthStreamingMode(1024 * 1024 * 1024) // 1 GB connection.connect() val out = connection.outputStream val data = ByteArray(1024 * 1024) var i = 0 while (i < 1024) { try { out.write(data) out.flush()
Registered: Fri Nov 01 11:42:11 UTC 2024 - Last Modified: Mon Jan 08 01:13:22 UTC 2024 - 21.9K bytes - Viewed (0) -
mockwebserver/src/test/java/mockwebserver3/MockWebServerTest.kt
val connection = server.url("/").toUrl().openConnection() as HttpURLConnection connection.requestMethod = "POST" connection.doOutput = true connection.setFixedLengthStreamingMode(1024 * 1024 * 1024) // 1 GB connection.connect() val out = connection.outputStream val data = ByteArray(1024 * 1024) var i = 0 while (i < 1024) { try { out!!.write(data) out.flush()
Registered: Fri Nov 01 11:42:11 UTC 2024 - Last Modified: Mon Jan 08 01:13:22 UTC 2024 - 23.5K bytes - Viewed (0) -
okhttp/src/main/resources/okhttp3/internal/publicsuffix/PublicSuffixDatabase.gz
gaivuotna.no gal gallery gallery.museum gallo gallup galsa.no gamagori.aichi.jp game game-host.org game-server.cc game.tw games games.hu gamo.shiga.jp gamvik.no gangaviika.no gangwon.kr gap garden garden.museum gateway.museum gaular.no gausdal.no gay gb gb.net gbiz gc.ca gd gd.cn gda.pl gdansk.pl gdn gdynia.pl ge ge.it gea geek.nz geekgalaxy.com geelvinck.museum gehirn.ne.jp geisei.kochi.jp gemological.museum gen.in gen.mi.us gen.ng gen.nz gen.tr genkai.saga.jp genoa.it genova.it gent gentapps.com genting...
Registered: Fri Nov 01 11:42:11 UTC 2024 - Last Modified: Wed Dec 20 23:27:07 UTC 2023 - 40.4K bytes - Viewed (0)