- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 82 for CPU (0.03 sec)
-
docs/metrics/prometheus/list.md
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Mon Jul 29 18:48:51 UTC 2024 - 43.3K bytes - Viewed (0) -
cmd/metrics-resource.go
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Wed Jul 24 23:30:33 UTC 2024 - 17.2K bytes - Viewed (0) -
README.md
A smaller CPU-only package is also available: ``` $ pip install tensorflow-cpu ``` To update TensorFlow to the latest version, add `--upgrade` flag to the above commands. *Nightly binaries are available for testing using the [tf-nightly](https://pypi.python.org/pypi/tf-nightly) and [tf-nightly-cpu](https://pypi.python.org/pypi/tf-nightly-cpu) packages on PyPi.*
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Thu Oct 05 15:00:10 UTC 2023 - 11.9K bytes - Viewed (0) -
cmd/update.go
cpuMap[cpus[i].PhysicalID] = struct{}{} coreMap[cpus[i].CoreID] = struct{}{} } cpu := cpus[0] uaAppend(" CPU ", fmt.Sprintf("(total_cpus:%d, total_cores:%d; vendor:%s; family:%s; model:%s; stepping:%d; model_name:%s)", len(cpuMap), len(coreMap), cpu.VendorID, cpu.Family, cpu.Model, cpu.Stepping, cpu.ModelName)) } uaAppend(")", "") return strings.Join(userAgentParts, "") }
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Fri May 24 23:05:23 UTC 2024 - 18.7K bytes - Viewed (0) -
docs/zh/docs/deployment/concepts.md
## 资源利用率 您的服务器是一个**资源**,您可以通过您的程序消耗或**利用**CPU 上的计算时间以及可用的 RAM 内存。 您想要消耗/利用多少系统资源? 您可能很容易认为“不多”,但实际上,您可能希望在不崩溃的情况下**尽可能多地消耗**。 如果您支付了 3 台服务器的费用,但只使用了它们的一点点 RAM 和 CPU,那么您可能**浪费金钱** 💸,并且可能 **浪费服务器电力** 🌎,等等。 在这种情况下,最好只拥有 2 台服务器并使用更高比例的资源(CPU、内存、磁盘、网络带宽等)。 另一方面,如果您有 2 台服务器,并且正在使用 **100% 的 CPU 和 RAM**,则在某些时候,一个进程会要求更多内存,并且服务器将不得不使用磁盘作为“内存” (这可能会慢数千倍),甚至**崩溃**。 或者一个进程可能需要执行一些计算,并且必须等到 CPU 再次空闲。
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 16.2K bytes - Viewed (0) -
common-protos/k8s.io/api/autoscaling/v2beta2/generated.proto
// ContainerResourceMetricSource indicates how to scale on a resource metric known to // Kubernetes, as specified in requests and limits, describing each pod in the // current scale target (e.g. CPU or memory). The values will be averaged // together before being compared to the target. Such metrics are built in to // Kubernetes, and have special scaling options on top of those available to
Registered: Wed Nov 06 22:53:10 UTC 2024 - Last Modified: Mon Mar 11 18:43:24 UTC 2024 - 21K bytes - Viewed (0) -
common-protos/k8s.io/api/autoscaling/v1/generated.proto
optional int32 desiredReplicas = 4; // currentCPUUtilizationPercentage is the current average CPU utilization over all pods, represented as a percentage of requested CPU, // e.g. 70 means that an average pod is using now 70% of its requested CPU. // +optional optional int32 currentCPUUtilizationPercentage = 5; } // MetricSpec specifies how to scale based on a single metric
Registered: Wed Nov 06 22:53:10 UTC 2024 - Last Modified: Mon Mar 11 18:43:24 UTC 2024 - 22K bytes - Viewed (0) -
docs/pt/docs/deployment/concepts.md
Nesse caso, seria melhor ter apenas 2 servidores e usar uma porcentagem maior de seus recursos (CPU, memória, disco, largura de banda de rede, etc).
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Fri Oct 04 11:04:50 UTC 2024 - 19.7K bytes - Viewed (0) -
docs/de/docs/deployment/concepts.md
In diesem Fall könnte es besser sein, nur zwei Server zu haben und einen höheren Prozentsatz von deren Ressourcen zu nutzen (CPU, Arbeitsspeicher, Festplatte, Netzwerkbandbreite, usw.).
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 20.6K bytes - Viewed (0) -
docs/en/docs/deployment/concepts.md
In that case, it could be better to have only 2 servers and use a higher percentage of their resources (CPU, memory, disk, network bandwidth, etc).
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Wed Sep 18 16:09:57 UTC 2024 - 17.8K bytes - Viewed (0)