Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 4 of 4 for opr2_type (0.11 sec)

  1. tensorflow/c/eager/c_api_unified_experimental.cc

                               TF_Status* s) {
      unwrap(o)->outputs.push_back(unwrap(tensor));
    }
    
    void TF_AbstractOpSetOpType(TF_AbstractOp* op, const char* const op_type,
                                TF_Status* s) {
      tsl::Set_TF_Status_from_Status(
          s, unwrap(op)->Reset(op_type,
                               /*raw_device_name=*/nullptr));
    }
    
    void TF_AbstractOpSetOpName(TF_AbstractOp* op, const char* const op_name,
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 9K bytes
    - Viewed (0)
  2. tensorflow/c/eager/c_api_unified_experimental.h

    TF_AbstractOp* TF_NewAbstractOp(TF_ExecutionContext* ctx);
    void TF_DeleteAbstractOp(TF_AbstractOp*);
    
    // TODO(srbs): Add APIs for specifying attrs etc.
    // `op_type` must outlive `op`.
    void TF_AbstractOpSetOpType(TF_AbstractOp* op, const char* const op_type,
                                TF_Status* s);
    // `op_name` must outlive `op`.
    void TF_AbstractOpSetOpName(TF_AbstractOp* op, const char* const op_name,
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sun Oct 24 11:27:00 UTC 2021
    - 7K bytes
    - Viewed (0)
  3. tensorflow/c/c_api_internal.h

      TF_Graph* parent;
      TF_Output* parent_inputs;
    };
    
    struct TF_OperationDescription {
      TF_OperationDescription(TF_Graph* g, const char* op_type,
                              const char* node_name)
          : node_builder(node_name, op_type, g->graph.op_registry()), graph(g) {}
    
      tensorflow::NodeBuilder node_builder;
      TF_Graph* graph;
      std::set<tensorflow::string> colocation_constraints;
    };
    
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat May 13 00:49:12 UTC 2023
    - 7.6K bytes
    - Viewed (0)
  4. tensorflow/c/eager/gradients.h

    // `GradientTape::Watch`.) The op_id is simply a unique index assigned to each
    // op executed under the tape. A separate map (`tensorflow::eager::OpTape`)
    // maintains the map from `op_id` to a `OpTapeEntry` which stores the `op_type`,
    // inputs and outputs and the gradient function These data structures combined
    // allow us to trace the data dependencies between operations and hence compute
    // gradients.
    //
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 6.9K bytes
    - Viewed (0)
Back to top