- Sort Score
- Result 10 results
- Languages All
Results 1 - 3 of 3 for input_index (0.39 sec)
-
tensorflow/c/eager/gradient_checker.h
namespace tensorflow { namespace gradients { /* Returns numerical grad inside `dtheta_approx` given `forward` model and * parameter specified by `input_index`. * * I.e. if y = <output of the forward model> and w = inputs[input_index], * this will calculate dy/dw numerically. * * `use_function` indicates whether to use graph mode(true) or eager(false). *
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 1.8K bytes - Viewed (0) -
tensorflow/c/eager/gradient_checker.cc
int input_index, bool use_function, AbstractTensorHandle** numerical_grad) { vector<AbstractTensorHandle*> theta_inputs(inputs.size()); for (int i{}; i < inputs.size(); ++i) { theta_inputs[i] = inputs[i]; } AbstractTensorHandle* theta = theta_inputs[input_index]; // parameter we are grad checking
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 7.3K bytes - Viewed (0) -
tensorflow/c/eager/gradient_checker_test.cc
Model model, AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, int input_index, float* expected_grad, int num_grad, bool use_function, double abs_error = 1e-2) { absl::Status s; AbstractTensorHandlePtr numerical_grad; { AbstractTensorHandle* numerical_grad_raw; s = CalcNumericalGrad(ctx, model, inputs, input_index, use_function, &numerical_grad_raw);
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 6.5K bytes - Viewed (0)