Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 23 for dataclasses (0.57 sec)

  1. docs/ru/docs/advanced/dataclasses.md

    2. `pydantic.dataclasses` — полностью совместимая замена (drop-in replacement) для `dataclasses`.
    
    3. Dataclass `Author` содержит список dataclass `Item`.
    
    4. Dataclass `Author` используется в параметре `response_model`.
    
    5. Вы можете использовать и другие стандартные аннотации типов вместе с dataclasses в качестве тела запроса.
    
        В этом случае это список dataclass `Item`.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Dec 26 10:43:02 UTC 2025
    - 6.6K bytes
    - Viewed (0)
  2. docs/en/docs/advanced/dataclasses.md

    The dataclass will be automatically converted to a Pydantic dataclass.
    
    This way, its schema will show up in the API docs user interface:
    
    <img src="/img/tutorial/dataclasses/image01.png">
    
    ## Dataclasses in Nested Data Structures { #dataclasses-in-nested-data-structures }
    
    You can also combine `dataclasses` with other type annotations to make nested data structures.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Dec 26 10:43:02 UTC 2025
    - 4.2K bytes
    - Viewed (0)
  3. docs/de/docs/advanced/dataclasses.md

    {* ../../docs_src/dataclasses_/tutorial001_py310.py hl[1,6:11,18:19] *}
    
    Das ist dank **Pydantic** ebenfalls möglich, da es <a href="https://docs.pydantic.dev/latest/concepts/dataclasses/#use-of-stdlib-dataclasses-with-basemodel" class="external-link" target="_blank">`dataclasses` intern unterstützt</a>.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Dec 26 10:43:02 UTC 2025
    - 5K bytes
    - Viewed (0)
  4. docs/es/docs/advanced/dataclasses.md

    2. `pydantic.dataclasses` es un reemplazo directo para `dataclasses`.
    
    3. El dataclass `Author` incluye una lista de dataclasses `Item`.
    
    4. El dataclass `Author` se usa como el parámetro `response_model`.
    
    5. Puedes usar otras anotaciones de tipos estándar con dataclasses como el request body.
    
        En este caso, es una lista de dataclasses `Item`.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Dec 26 10:43:02 UTC 2025
    - 4.5K bytes
    - Viewed (0)
  5. docs/pt/docs/advanced/dataclasses.md

    3. A dataclass `Author` inclui uma lista de dataclasses `Item`.
    
    4. A dataclass `Author` é usada como o parâmetro `response_model`.
    
    5. Você pode usar outras anotações de tipo padrão com dataclasses como o corpo da requisição.
    
        Neste caso, é uma lista de dataclasses `Item`.
    
    6. Aqui estamos retornando um dicionário que contém `items`, que é uma lista de dataclasses.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Dec 26 10:43:02 UTC 2025
    - 4.5K bytes
    - Viewed (0)
  6. docs/zh/docs/advanced/dataclasses.md

    <img src="/img/tutorial/dataclasses/image01.png">
    
    ## 在嵌套数据结构中使用数据类
    
    您还可以把 `dataclasses` 与其它类型注解组合在一起,创建嵌套数据结构。
    
    还有一些情况也可以使用 Pydantic 的 `dataclasses`。例如,在 API 文档中显示错误。
    
    本例把标准的 `dataclasses` 直接替换为 `pydantic.dataclasses`:
    
    ```{ .python .annotate hl_lines="1  5  8-11  14-17  23-25  28" }
    {!../../docs_src/dataclasses_/tutorial003.py!}
    ```
    
    1. 本例依然要从标准的 `dataclasses` 中导入 `field`;
    
    2. 使用 `pydantic.dataclasses` 直接替换 `dataclasses`;
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Dec 26 10:43:02 UTC 2025
    - 3.7K bytes
    - Viewed (0)
  7. docs_src/dataclasses_/tutorial003_py310.py

    from dataclasses import field  # (1)
    
    from fastapi import FastAPI
    from pydantic.dataclasses import dataclass  # (2)
    
    
    @dataclass
    class Item:
        name: str
        description: str | None = None
    
    
    @dataclass
    class Author:
        name: str
        items: list[Item] = field(default_factory=list)  # (3)
    
    
    app = FastAPI()
    
    
    @app.post("/authors/{author_id}/items/", response_model=Author)  # (4)
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Dec 26 10:43:02 UTC 2025
    - 1.3K bytes
    - Viewed (0)
  8. docs_src/dataclasses_/tutorial003_py39.py

    from dataclasses import field  # (1)
    from typing import Union
    
    from fastapi import FastAPI
    from pydantic.dataclasses import dataclass  # (2)
    
    
    @dataclass
    class Item:
        name: str
        description: Union[str, None] = None
    
    
    @dataclass
    class Author:
        name: str
        items: list[Item] = field(default_factory=list)  # (3)
    
    
    app = FastAPI()
    
    
    @app.post("/authors/{author_id}/items/", response_model=Author)  # (4)
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Dec 26 10:43:02 UTC 2025
    - 1.4K bytes
    - Viewed (0)
  9. docs_src/dataclasses_/tutorial002_py39.py

    from dataclasses import dataclass, field
    from typing import Union
    
    from fastapi import FastAPI
    
    
    @dataclass
    class Item:
        name: str
        price: float
        tags: list[str] = field(default_factory=list)
        description: Union[str, None] = None
        tax: Union[float, None] = None
    
    
    app = FastAPI()
    
    
    @app.get("/items/next", response_model=Item)
    async def read_next_item():
        return {
            "name": "Island In The Moon",
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Dec 26 10:43:02 UTC 2025
    - 543 bytes
    - Viewed (0)
  10. docs_src/dataclasses_/tutorial001_py310.py

    from dataclasses import dataclass
    
    from fastapi import FastAPI
    
    
    @dataclass
    class Item:
        name: str
        price: float
        description: str | None = None
        tax: float | None = None
    
    
    app = FastAPI()
    
    
    @app.post("/items/")
    async def create_item(item: Item):
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Dec 26 10:43:02 UTC 2025
    - 275 bytes
    - Viewed (0)
Back to top