Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 61 for John (0.02 sec)

  1. docs/zh/docs/tutorial/extra-models.md

    ```Python
    user_in = UserIn(username="john", password="secret", email="john******@****.***")
    ```
    
    就能以如下方式调用:
    
    ```Python
    user_dict = user_in.dict()
    ```
    
    现在,变量 `user_dict`中的就是包含数据的**字典**(变量 `user_dict` 是字典,不是 Pydantic 模型对象)。
    
    以如下方式调用:
    
    ```Python
    print(user_dict)
    ```
    
    输出的就是 Python **字典**:
    
    ```Python
    {
        'username': 'john',
        'password': 'secret',
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 6.6K bytes
    - Viewed (0)
  2. tests/test_dependency_security_overrides.py

        response = client.get("/user")
        assert response.json() == {
            "user": "john",
            "scopes": ["foo", "bar"],
            "data": [1, 2, 3],
        }
    
    
    def test_override_data():
        app.dependency_overrides[get_data] = get_data_override
        response = client.get("/user")
        assert response.json() == {
            "user": "john",
            "scopes": ["foo", "bar"],
            "data": [3, 4, 5],
        }
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Jun 14 15:54:46 UTC 2020
    - 1.4K bytes
    - Viewed (0)
  3. docs_src/python_types/tutorial011_py310.py

    from pydantic import BaseModel
    
    
    class User(BaseModel):
        id: int
        name: str = "John Doe"
        signup_ts: datetime | None = None
        friends: list[int] = []
    
    
    external_data = {
        "id": "123",
        "signup_ts": "2017-06-01 12:22",
        "friends": [1, "2", b"3"],
    }
    user = User(**external_data)
    print(user)
    # > User id=123 name='John Doe' signup_ts=datetime.datetime(2017, 6, 1, 12, 22) friends=[1, 2, 3]
    print(user.id)
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sat Sep 02 15:56:35 UTC 2023
    - 461 bytes
    - Viewed (0)
  4. docs/em/docs/tutorial/extra-models.md

    ```Python
    user_in = UserIn(username="john", password="secret", email="john******@****.***")
    ```
    
    & ⤴️ 👥 🤙:
    
    ```Python
    user_dict = user_in.dict()
    ```
    
    👥 🔜 ✔️ `dict` ⏮️ 💽 🔢 `user_dict` (⚫️ `dict` ↩️ Pydantic 🏷 🎚).
    
    & 🚥 👥 🤙:
    
    ```Python
    print(user_dict)
    ```
    
    👥 🔜 🤚 🐍 `dict` ⏮️:
    
    ```Python
    {
        'username': 'john',
        'password': 'secret',
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 6.8K bytes
    - Viewed (0)
  5. docs_src/python_types/tutorial011.py

    from pydantic import BaseModel
    
    
    class User(BaseModel):
        id: int
        name: str = "John Doe"
        signup_ts: Union[datetime, None] = None
        friends: List[int] = []
    
    
    external_data = {
        "id": "123",
        "signup_ts": "2017-06-01 12:22",
        "friends": [1, "2", b"3"],
    }
    user = User(**external_data)
    print(user)
    # > User id=123 name='John Doe' signup_ts=datetime.datetime(2017, 6, 1, 12, 22) friends=[1, 2, 3]
    print(user.id)
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sat Sep 02 15:56:35 UTC 2023
    - 498 bytes
    - Viewed (0)
  6. docs_src/security/tutorial002_an_py39.py

        full_name: Union[str, None] = None
        disabled: Union[bool, None] = None
    
    
    def fake_decode_token(token):
        return User(
            username=token + "fakedecoded", email="john@example.com", full_name="John Doe"
        )
    
    
    async def get_current_user(token: Annotated[str, Depends(oauth2_scheme)]):
        user = fake_decode_token(token)
        return user
    
    
    @app.get("/users/me")
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sat Mar 18 12:29:59 UTC 2023
    - 786 bytes
    - Viewed (0)
  7. docs_src/python_types/tutorial011_py39.py

    from pydantic import BaseModel
    
    
    class User(BaseModel):
        id: int
        name: str = "John Doe"
        signup_ts: Union[datetime, None] = None
        friends: list[int] = []
    
    
    external_data = {
        "id": "123",
        "signup_ts": "2017-06-01 12:22",
        "friends": [1, "2", b"3"],
    }
    user = User(**external_data)
    print(user)
    # > User id=123 name='John Doe' signup_ts=datetime.datetime(2017, 6, 1, 12, 22) friends=[1, 2, 3]
    print(user.id)
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sat Sep 02 15:56:35 UTC 2023
    - 492 bytes
    - Viewed (0)
  8. docs/pt/docs/tutorial/extra-models.md

    Os modelos Pydantic possuem um método `.dict()` que retorna um `dict` com os dados do modelo.
    
    Então, se criarmos um objeto Pydantic `user_in` como:
    
    ```Python
    user_in = UserIn(username="john", password="secret", email="john******@****.***")
    ```
    
    e depois chamarmos:
    
    ```Python
    user_dict = user_in.dict()
    ```
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 7.8K bytes
    - Viewed (0)
  9. docs/en/docs/tutorial/extra-models.md

    Pydantic models have a `.dict()` method that returns a `dict` with the model's data.
    
    So, if we create a Pydantic object `user_in` like:
    
    ```Python
    user_in = UserIn(username="john", password="secret", email="john******@****.***")
    ```
    
    and then we call:
    
    ```Python
    user_dict = user_in.dict()
    ```
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 7.7K bytes
    - Viewed (0)
  10. docs/de/docs/tutorial/extra-models.md

    Pydantic-Modelle haben eine `.dict()`-Methode, die ein `dict` mit den Daten des Modells zurückgibt.
    
    Wenn wir also ein Pydantic-Objekt `user_in` erstellen, etwa so:
    
    ```Python
    user_in = UserIn(username="john", password="secret", email="john******@****.***")
    ```
    
    und wir rufen seine `.dict()`-Methode auf:
    
    ```Python
    user_dict = user_in.dict()
    ```
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 8.7K bytes
    - Viewed (0)
Back to top