- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 61 for John (0.02 sec)
-
docs/zh/docs/tutorial/extra-models.md
```Python user_in = UserIn(username="john", password="secret", email="john******@****.***") ``` 就能以如下方式调用: ```Python user_dict = user_in.dict() ``` 现在,变量 `user_dict`中的就是包含数据的**字典**(变量 `user_dict` 是字典,不是 Pydantic 模型对象)。 以如下方式调用: ```Python print(user_dict) ``` 输出的就是 Python **字典**: ```Python { 'username': 'john', 'password': 'secret',
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 6.6K bytes - Viewed (0) -
tests/test_dependency_security_overrides.py
response = client.get("/user") assert response.json() == { "user": "john", "scopes": ["foo", "bar"], "data": [1, 2, 3], } def test_override_data(): app.dependency_overrides[get_data] = get_data_override response = client.get("/user") assert response.json() == { "user": "john", "scopes": ["foo", "bar"], "data": [3, 4, 5], }
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Jun 14 15:54:46 UTC 2020 - 1.4K bytes - Viewed (0) -
docs_src/python_types/tutorial011_py310.py
from pydantic import BaseModel class User(BaseModel): id: int name: str = "John Doe" signup_ts: datetime | None = None friends: list[int] = [] external_data = { "id": "123", "signup_ts": "2017-06-01 12:22", "friends": [1, "2", b"3"], } user = User(**external_data) print(user) # > User id=123 name='John Doe' signup_ts=datetime.datetime(2017, 6, 1, 12, 22) friends=[1, 2, 3] print(user.id)
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sat Sep 02 15:56:35 UTC 2023 - 461 bytes - Viewed (0) -
docs/em/docs/tutorial/extra-models.md
```Python user_in = UserIn(username="john", password="secret", email="john******@****.***") ``` & ⤴️ 👥 🤙: ```Python user_dict = user_in.dict() ``` 👥 🔜 ✔️ `dict` ⏮️ 💽 🔢 `user_dict` (⚫️ `dict` ↩️ Pydantic 🏷 🎚). & 🚥 👥 🤙: ```Python print(user_dict) ``` 👥 🔜 🤚 🐍 `dict` ⏮️: ```Python { 'username': 'john', 'password': 'secret',
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 6.8K bytes - Viewed (0) -
docs_src/python_types/tutorial011.py
from pydantic import BaseModel class User(BaseModel): id: int name: str = "John Doe" signup_ts: Union[datetime, None] = None friends: List[int] = [] external_data = { "id": "123", "signup_ts": "2017-06-01 12:22", "friends": [1, "2", b"3"], } user = User(**external_data) print(user) # > User id=123 name='John Doe' signup_ts=datetime.datetime(2017, 6, 1, 12, 22) friends=[1, 2, 3] print(user.id)
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sat Sep 02 15:56:35 UTC 2023 - 498 bytes - Viewed (0) -
docs_src/security/tutorial002_an_py39.py
full_name: Union[str, None] = None disabled: Union[bool, None] = None def fake_decode_token(token): return User( username=token + "fakedecoded", email="john@example.com", full_name="John Doe" ) async def get_current_user(token: Annotated[str, Depends(oauth2_scheme)]): user = fake_decode_token(token) return user @app.get("/users/me")
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sat Mar 18 12:29:59 UTC 2023 - 786 bytes - Viewed (0) -
docs_src/python_types/tutorial011_py39.py
from pydantic import BaseModel class User(BaseModel): id: int name: str = "John Doe" signup_ts: Union[datetime, None] = None friends: list[int] = [] external_data = { "id": "123", "signup_ts": "2017-06-01 12:22", "friends": [1, "2", b"3"], } user = User(**external_data) print(user) # > User id=123 name='John Doe' signup_ts=datetime.datetime(2017, 6, 1, 12, 22) friends=[1, 2, 3] print(user.id)
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sat Sep 02 15:56:35 UTC 2023 - 492 bytes - Viewed (0) -
docs/pt/docs/tutorial/extra-models.md
Os modelos Pydantic possuem um método `.dict()` que retorna um `dict` com os dados do modelo. Então, se criarmos um objeto Pydantic `user_in` como: ```Python user_in = UserIn(username="john", password="secret", email="john******@****.***") ``` e depois chamarmos: ```Python user_dict = user_in.dict() ```
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 7.8K bytes - Viewed (0) -
docs/en/docs/tutorial/extra-models.md
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 7.7K bytes - Viewed (0) -
docs/de/docs/tutorial/extra-models.md
Pydantic-Modelle haben eine `.dict()`-Methode, die ein `dict` mit den Daten des Modells zurückgibt. Wenn wir also ein Pydantic-Objekt `user_in` erstellen, etwa so: ```Python user_in = UserIn(username="john", password="secret", email="john******@****.***") ``` und wir rufen seine `.dict()`-Methode auf: ```Python user_dict = user_in.dict() ```
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 8.7K bytes - Viewed (0)