- Sort Score
- Result 10 results
- Languages All
Results 1 - 6 of 6 for GPUs (0.02 sec)
-
WORKSPACE
tf_workspace0() load( "@local_tsl//third_party/gpus/cuda/hermetic:cuda_json_init_repository.bzl", "cuda_json_init_repository", ) cuda_json_init_repository() load( "@cuda_redist_json//:distributions.bzl", "CUDA_REDISTRIBUTIONS", "CUDNN_REDISTRIBUTIONS", ) load( "@local_tsl//third_party/gpus/cuda/hermetic:cuda_redist_init_repositories.bzl", "cuda_redist_init_repositories",
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Fri Oct 11 16:49:28 UTC 2024 - 3K bytes - Viewed (0) -
ci/official/envs/linux_x86_cuda_build
TFCI_BAZEL_COMMON_ARGS="--repo_env=HERMETIC_PYTHON_VERSION=$TFCI_PYTHON_VERSION --config release_gpu_linux" TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=linux_cuda TFCI_BUILD_PIP_PACKAGE_ARGS="--repo_env=WHEEL_NAME=tensorflow" TFCI_DOCKER_ARGS="--gpus all" TFCI_LIB_SUFFIX="-gpu-linux-x86_64"
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 28 17:57:41 UTC 2024 - 1.1K bytes - Viewed (0) -
ci/official/envs/linux_x86_cuda
TFCI_BAZEL_COMMON_ARGS="--repo_env=HERMETIC_PYTHON_VERSION=$TFCI_PYTHON_VERSION --config release_gpu_linux" TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=linux_cuda TFCI_BUILD_PIP_PACKAGE_ARGS="--repo_env=WHEEL_NAME=tensorflow" TFCI_DOCKER_ARGS="--gpus all" TFCI_LIB_SUFFIX="-gpu-linux-x86_64"
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 14 23:45:36 UTC 2024 - 1K bytes - Viewed (0) -
SECURITY.md
### Hardware attacks Physical GPUs or TPUs can also be the target of attacks. [Published research](https://scholar.google.com/scholar?q=gpu+side+channel) shows that it might be possible to use side channel attacks on the GPU to leak data from other running models or processes in the same system. GPUs can also have implementation bugs that might allow attackers to leave malicious code running
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Wed Oct 16 16:10:43 UTC 2024 - 9.6K bytes - Viewed (0) -
CITATION.cff
represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general purpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer, whereas in previous “parameter server” designs the management of shared state is built into the system, TensorFlow...
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Sep 06 15:26:23 UTC 2021 - 3.5K bytes - Viewed (0) -
tensorflow/c/eager/c_api_test_util.h
tensorflow::ServerDef GetServerDef(int num_tasks); // Create a multi-client ServerDef with the given `job_name`, add `num_tasks` // tasks and `num_virtual_gpus` virtual GPUs in it. tensorflow::ServerDef GetMultiClientServerDef(const std::string& job_name, int num_tasks, int num_virtual_gpus = 0);
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Jul 17 23:43:59 UTC 2023 - 7.7K bytes - Viewed (0)